A Detailed Study of Request Scheduling in Multimedia
Systems!

Nabil J. Sarhan Chita R. Das

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802
Phone: (814) 865-0194
E-mail: {sarhan,das}@cse.psu.edu

Abstract

The investigation of various alternatives to improve the performance of multimedia-on-demand
(MOD) servers has become a major research focus because of the rapidly growing interest in MOD
services, especially on the Internet. The performance of MOD servers can be enhanced significantly
through resource sharing. The exploited degrees of resource sharing depend greatly on how these
servers schedule the waiting requests. By scheduling the requests intelligently, a server can support
more concurrent customers and can reduce their waiting times for service. In this paper, we provide
a detailed analysis of existing scheduling policies and propose two new policies, called Quantized
First Come First Serve (QFCFS) and Enhanced Minimum Idling Mazimum Loss (IMLT). We
demonstrate the effectiveness of these policies through simulation and show that they suite different
patterns of customer waiting tolerance.

Keywords: Multimedia-on-demand (MOD), multimedia systems, performance evalua-
tion, scheduling, video-on-demand (VOD).

1 Introduction

Multimedia-on-demand (MOD) systems enable customers to access the multimedia contents they want
at the times of their choosing. They also allow customers to apply VCR-like operations such as pause,
resume, fast forward, and fast rewind. Therefore, motion picture studios and cable companies have
started looking for ways to deliver MOD services. These services can also help these companies to
create markets for their huge on-the-shelf media contents. Besides its use for entertainment, MOD has
been of great importance in education and distant learning in particular. Video-on-demand (VOD) is
the most common MOD application and is the application of interest in this study.

Unfortunately, the number of clients that can be supported concurrently by a VOD server is highly

constrained by the requirements of the real-time playback and the high transfer rates. A wide spectrum

!This research was supported in part by NSF grants CCR-9900701, CCR-0098149, CCR-0208734, and EIA-0202007.

of techniques, therefore, has been developed to enhance the performance of VOD servers, including
resource sharing and scheduling [5, 11, 25, 1, 12, 13, 22|, admission control [14, 26], disk striping [23, 4],
data replication [9, 4], disk head scheduling [19, 15], data block allocation [18, 9], and adaptive block
rearrangement [20].

The performance of VOD servers can be significantly improved by servicing multiple requests from
a common set of resources. The classes of resource sharing strategies for VOD servers include batching
[5, 7, 25, 1], patching [12, 21], piggy-backing [11], broadcasting [13, 17|, and interval caching [6]. With
batching, requests to same movies are accumulated over a time window and serviced together by uti-
lizing the multicast facility. Batching, therefore, off-loads the storage subsystem and uses efficiently
server bandwidth and network resources. Patching expands the multicast tree dynamically to include
new requests, so it reduces the request waiting time but requires additional bandwidth and buffer
space at the client. Piggy-backing services a request almost immediately but adjusts the playback rate
so that the request catches up with a preceding stream, resulting in a lower-quality initial presenta-
tion. Broadcasting techniques divide each movie into multiple segments and broadcast each segment
periodically. Thus, broadcasting requires relatively very high bandwidth and buffer space at the client.
With interval caching, the server caches intervals between successive streams. This technique shortens
the request waiting time without increasing the bandwidth or the space requirement at the client, but
it increases the overall cost of the server.

The exploited degrees of resource sharing depend greatly on how VOD servers schedule the waiting
requests. Through intelligent scheduling, a server can increase the number of customers serviced
concurrently while reducing their initial waiting times. Batching systems rely entirely on scheduling
to boost up their performance. VOD systems that employ other resource sharing techniques also
benefit from intelligent scheduling. (Note that only the most popular movies are broadcasted when
the broadcasting technique is used.) This paper focuses on VOD servers that employ batching as the
primary resource sharing technique. As most prior studies, this paper assumes the availability of the
multicast facility. Multicast is already employed or can be easily employed in most enterprise and local
area networks (LANs). Besides, it is supported by IPv4 and has incrementally been deployed over the
Internet because of the development and standardization of pertinent protocols and the willingness of
Internet Service Providers (ISPs) to provide a scalable architecture. In fact, a ubiquitous wide-scale

deployment of native (non-tunneled) multicast across the Internet is becoming a reality [10]. For

example, Sprint has already deployed native multicast across its Internet backbone [24].

Scheduling policies for VOD servers include First Come First Serve (FCFS) [5, 25], Mazimum
Queue Length (MQL) [5], Mazimum Factored Queue Length (MFQL) [1], Minimum Idling Mazimum
Loss (IML) [22], and Minimum Idling Mazimum Queue Length (IMQ) [22]. A VOD server maintains
a waiting queue for every movie and services all requests in a queue together using only one stream.
FCFS selects the queue with the oldest request, while MQL selects the longest queue, and MFQL
selects the queue with the largest factored length. The factored length of a queue is defined as its
length divided by the square root of the relative access frequency of its corresponding movie. Both
IML an IMQ improve throughput by exploiting minimum request waiting times, but they differ in
the selection criterion. IML selects from the set of eligible queues the queue that will otherwise incur
the largest expected loss of requests, while IMQ selects the longest queue. Longest Wait First (LWF)
[27, 8] is another common scheduling policy, but it was not studied in the context of VOD servers. It
selects the queue with the largest sum of request waiting times. To simplify the terminology, we refer
to LWF as FCFS-sum.

This paper provides a detailed analysis of scheduling policies. Only small subsets of scheduling
policies were investigated in prior works and only under limited models of customer waiting tolerance.
Previous studies are also inconsistent with regard to the relative performance of MQL to FCFS. For
example, [5] shows that MQL achieves better throughput than FCFS, whereas [1] and [22] indicate the
opposite. These discrepancies are not due to any specific assumptions in these studies and are resolved
in this paper. Moreover, there is a misconception with regard to the ability of FCFS to provide time
of service guarantees. In [25], it is stated that FCFS can provide time of service guarantees, which
are either precise or later the actual times of service. In contrast, we show that FCFS may violate
these guarantees. Furthermore, previous studies on VOD unfairly discarded FCFS-sum without proper
investigation although it was shown to perform very well in other contexts [27, 8, 2].

We also propose two scheduling policies: Quantized FCFS (QFCFS) and Enhanced IML (IML™).
QFCFS combines the benefits of FCFS and MQL/MFQL by scheduling requests based on both waiting
times and queue lengths. It first translates waiting times into discrete levels and then selects the
queue with the highest level. If there are multiple eligible queues, it chooses the longest queue or the
queue with the largest (factored) length. QFCFS can lead to the best compromise between FCFS and

MQL/MFQL if the distance between two consecutive levels is adjusted appropriately. IML™T efficiently

exploits minimum request waiting times. The idea behind this policy is based on the observation that
the expected request loss, which is examined by IML, is a finite and typically a small number, so
multiple queues may have the same expected loss. Whereas IML selects just any one of these queues,
IML™ enhances performance by selecting the queue with the largest factored length. The choice
between QFCFS and IML™ depends on the pattern of the waiting tolerance exhibited by customers.

We compare the performance of various policies through extensive simulation. We primarily study
FCFS, MQL, MFQL, FCFS-sum, QFCFS, IMQ, IML, and IMLT. We analyze three objectives in
simulation: the overall customer reneging (defection or turnaway) probability, the average customer
waiting time, and unfairness. The first objective is the most important because it translates to the
number of customers that can be serviced concurrently and to server throughput, while the second
signifies the quality of service (QoS) and comes next in importance. Unfairness measures the bias
against unpopular movies. We also examine the impacts of customer waiting tolerance and server
capacity (or server load) on the effectiveness of each policy. Moreover, we compare the policies in
terms of other objectives, such as implementation complexity, ability to prevent starvation, and ability
to provide (predictive) time of service guarantees. This study shows that the numerous scheduling
objectives, which lead to several design tradeoffs, and the dependence of performance on the waiting
tolerance and server load complicate the decision as to which policy to apply. The main results can

be summarized as follows.

¢ MQL and MFQL always achieve the shortest waiting times, and MQL can perform nearly as
well as MFQL in terms of throughput, waiting times, and unfairness, even when assuming that
MFQL has perfect knowledge of movie access frequencies. MQL is also simpler. Hence, contrary
to [1], MQL may be preferred over MFQL.

e When the waiting tolerance follows a normal distribution, FCFS-sum and IML™ perform almost
identically in terms of various metrics and yield the highest throughput.

e When the tolerance follows an exponential distribution, MFQL and MQL yield the highest
throughput.

e When customers exhibit minimum waiting times, IML™ achieves the highest throughput. IML™
also results in shorter waiting times than IML but longer than MQL, MFQL, and IMQ), and it
is also fairer than MQL, MFQL, and IMQ.

e The distinct advantages of FCFS are simplicity, fairness, and ability to prevent starvations.
When assuming that FCFS provides true time of service guarantees and that all other policies
cannot influence customers to wait, FCFS leads to the highest throughput, but it results in the
longest waiting times. Besides, all scheduling policies can motivate customers to wait to various
degrees.

¢ When the tolerance follows an exponential distribution, QFCFS performs very well. In particular,
with QFCFS, a server can support as many concurrent customers for high server capacities as
MFQL and MQL and can start their service as immediately, while being fair, able to prevent

starvations, and able to provide reasonably-accurate predictive time of service guarantees.

The rest of the paper is organized as follows. We discuss the main scheduling objectives and the
common scheduling policies in Section 2. In Section 3, we analyze the existing scheduling policies
and discuss the applicability of other scheduling policies that were not investigated in the context of
VOD systems. Then, we address the issue of providing time of service guarantees in Section 4. We
present QFCFS and IML™ in Section 5. In Section 6, we discuss the simulation platform and the
workload characteristics and present the main simulation results. Finally, we draw conclusions in the

last section.

2 Scheduling Objectives and Policies

A VOD server maintains a waiting queue for every movie, routes incoming requests to their corre-
sponding queues, selects an appropriate queue for service whenever it has an available channel, and
services all requests in the selected queue using only one channel. A channel is a set of resources
needed to deliver a multimedia stream. The number of channels is referred to as server capacity. We

next discuss the primary scheduling objectives and the common scheduling policies.
2.1 Objectives

All scheduling policies are guided by one or more of the following primary objectives.

1. Minimize the overall customer reneging (defection) probability.
2. Minimize the average request waiting time.

3. Prevent starvations.

4. Provide time of service guarantees.
5. Minimize unfairness.

6. Minimize implementation complexity.

The first objective is the most important because it corresponds directly to server throughput. The
throughput, X, for a given request arrival rate, A, and reneging probability, P,, is given by X =
(1—P,) x A. The second objective comes next in importance. The second, third, and fourth objectives
are indicators of customer-perceived quality of service (QoS). By providing time of service guarantees,
a VOD server can also influence customers to wait, thereby increasing server throughput. It is also
usually desirable that VOD servers treat equally the requests for all movies. Unfairness measures the

bias of a policy against cold (i.e., unpopular) movies and can be found by the following equation:

unfairness = \/ M (r; —7)2/(M — 1), where r; is the reneging probability for the waiting queue 1,
7 is the mean reneging probability across all waiting queues, and M is the number of waiting queues
(and number of movies as well). Finally, minimizing the implementation complexity is a secondary

issue in VOD servers as explained in Subsection 3.2.
2.2 Scheduling Policies

Let us now discuss the major scheduling policies for VOD servers.

o First Come First Serve (FCFS) [5] - This policy selects the queue with the oldest request.

e FCFS-n [5] - With this policy, the server broadcasts periodically the n most common movies on
dedicated channels and schedules the requests for the other movies on a FCFS basis. When no
request is waiting for the playback of any one of the n most common movies, the server uses the

corresponding dedicated channel for the playback of one of the other movies.
e Mazimum Queue Length (MQL) [5] - This policy selects the longest queue.

e Mazimum Factored Queue Length (MFQL) [1] - This policy attempts to minimize the mean
request waiting time by selecting the queue with the largest factored queue length. The factored
length of a queue is defined as its length divided by the square root of the relative access frequency
of its corresponding movie. MFQL reduces waiting times optimally only if the server is fully

loaded and customers always wait until they receive service (i.e. no defections).

e Group-Guaranteed Server Capacity (GGSC) [25] - This policy preassigns server channel capacity
to groups of requests in order to optimize the mean request waiting time. It groups objects that
have nearly equal expected batch sizes and schedules requests in each group on a FCFS basis on

the collective channels assigned to each group.

e Mazimum Batching Schemes [22] - These schemes aggressively pursue batching by deliberately
delaying requests. With these schemes, a queue is eligible for selection only if it has at least one
request with a waiting time greater than or equal to a pre-specified batching threshold. The
selection criterion of a queue from the eligible queues leads to two alternative policies: BMQ
and BML. BMQ selects the longest queue, while BML selects the queue that will incur — if not

selected — the largest expected loss of requests till the next stream completion time.

e Minimum Idling Schemes [22] - These schemes, which include IML and IM@), pursue batching

without minimum wait requirements and will be discussed in Subsection 5.2.
3 Preliminary Analysis

FCFS is the fairest and the easiest to implement. MQL and MFQL reduce the average request waiting
times but tend to be biased against cold movies, which have relatively few waiting requests. Unlike
MQL, MFQL requires periodic computations of access frequencies. FCFS can prevent starvations,
whereas MQL and MFQL cannot. GGSC does not perform as well as FCFS in high-end servers [25],
so we will not consider it further in this paper. Similarly, we will not analyze FCFS-n because [25]
shows that it performs either as well as or worse than FCFS. Maximum batching and minimum idling
schemes have relatively high implementation complexities and may cause starvations, but they can
exploit minimum request waiting times. Minimum idling schemes require fewer channels to guarantee
a given reneging percent than maximum batching schemes [22]. Hence, we will not consider maximum

batching schemes further. Next, we discuss two variants of MQL and two variants of FCFS.
3.1 MAQL Variants

There is a large discrepancy in the relative performance of MQL with respect to FCFS (and MFQL)
in [5, 22, 1]. We have identified that the discrepancy is caused by different possible implementations
of MQL. Note that the length of a queue is a finite and typically a small number. Thus, there is

a good probability that multiple queues have the same length. The definition of MQL [5], however,

does not specify the selection criterion among the longest queues. We consider the following two
alternative implementations: MQL-u and MQL-f. MQL-u selects the longest queue, and whenever
there is more than one eligible queue, it selects the queue of the most popular movie among them.
MQL-f is similar to MQL-u, but it selects the queue of the least popular movie among the eligible
queues. An implementation of MQL can easily be MQL-f or MQL-u, depending, in many cases, merely
on the order of examining the queues or the specification of the priority function (e.g., as > or >).
MQL-u can be aggressively biased against cold movies, while MQL-f can be much fairer. As shown in
Subsection 6.2, MQL-u and MQL-f vary considerably in terms of the achieved throughput and average
request waiting time. We were able to reproduce the results in [5, 22, 1] by using one or the other of
these two implementations. In the context of videotex systems, a policy called Most Requests First
Lowest (MRFL) was proposed in [8, 27]. This policy is essentially the same as MQL-f, but it was not

considered in previous studies of VOD servers.

3.2 FCFS Variants

A variation of FCFS, called Longest Wait First (LWF), was investigated in the context of videotex
systems [8, 27] and web servers with data broadcasting [2]. LWF selects the queue with the largest
sum of request waiting times, and it was shown to perform very well in these contexts. In the
context of VOD servers, this policy was discarded [5] without proper investigation just because of its
high implementation complexity. In VOD systems, however, the number of objects (movies) is much
smaller than the number of objects (pages) in web servers or videotex systems, and the number of
concurrent customers is also much smaller. Furthermore, the CPU and the memory are not typically
performance bottlenecks of any sort in VOD servers. To simplify the terminology, we refer to this

policy as FCFS-sum in the subsequent analysis.

4 Providing Time of Service Guarantees

FCFS is believed to provide time of service guarantees. In [25], it is stated that FCFS can provide
time of service guarantees, which are either precise or later than the actual times of service. We show,
however, that FCFS may violate these guarantees. A server that provides time of service guarantees
can be implemented in several ways. Thus, we base our argument on the concept rather than any

specific implementation.

Let us discuss first how a server may provide time of service guarantees. For now, let us assume
the absence of VCR-like operations (pause, resume, fast forward, and fast rewind). In the absence of
these operations, a VOD server knows exactly when each running stream will complete. A channel
becomes available whenever a running stream completes, so the server can assign completion times of
running streams as time of service guarantees to incoming requests. Obviously, the server should assign
the closest completion times first. Thus, when a request comes and joins an empty waiting queue,
the server grants that request a new time of service guarantee. If the incoming request, however,
joins a queue that has at least one request, then the new request can be given the same time of
service guarantee as the other request(s) waiting in the queue because of batch scheduling. Now let
us discuss the impact of VCR-like operations. Applying a VCR-like operation can be considered as an
early completion if the corresponding client is the only recipient of the stream because VOD servers
typically support interactive operations by using contingency channels [7]. Early completions lead to
servicing some requests earlier than their time of service guarantees.

The following example explains why with FCF'S, the server may violate time of service guarantees.
We assume in this example that {1 < 12 < 13 < t4 < t5 < t6 and that i # 5. We also assume that at
the current state of the server, t5 is the next stream completion time that has not yet been assigned,
and t6 is the completion time that immediately follows. At time ¢1, a new request, R1, arrives and
joins the empty waiting queue i. So, the server gives R1 the time of service guarantee t5. At time ¢2,
a new request, R2, arrives and joins the empty waiting queue j. Hence, the server gives R2 the time
of service guarantee t6. At time t3, a new request, R3, arrives and joins the waiting queue 7, which
already has the request R1. So, the server assigns R3 the time of service guarantee t5. Assume that
at time ¢4, R1 reneges (probably because it was given a far time of service guarantee). Thus, using
FCFS, the server will service R2 before R3, although R3 was given a better time of service guarantee.
Assuming that the time of service guarantee t4 is precise (i.e., equal to the time when service starts
for the request(s) assigned to it), the server will violate the time of service guarantee of R3! We have
also observed violations of time of service guarantees during simulations that use the same reneging

behavior used in [25].

5 Proposed Policies
5.1 Quantized FCFS (QFCFS)

We note that basing the scheduling decisions entirely on waiting times (as in FCFS) may not be
advantageous when the oldest requests in multiple queues differ only a little in age. We also note
that basing the decisions entirely on queue lengths (as in MQL and MFQL) causes starvations and
undermines server’s ability to provide good predictive time of service guarantees. We, therefore,
propose a generalized policy called Quantized FCFS (QFCFS) that examines both waiting times and
queue lengths, thereby serving as a good compromise between FCFS and MQL/MFQL.

QFCF'S works as follows. First, it translates waiting times into discrete levels. The interval between
consecutive levels is called the quantization interval (QQ). Then, it selects for service the queue with the
largest quantized waiting time. Note that there may be multiple eligible queues. The selection criterion
of one queue among these queues leads to two variants of QFCFS. The first variant chooses the longest
queue, while the second chooses the queue with the largest factored length. QFCFS is a generalized
policy because if @ approaches zero, then QFCFS becomes FCFS, and if () approaches a sufficiently
large number, QFCFS becomes MQL (or MFQL). The quantization can be performed by rounding or
truncation. By rounding, a waiting time is translated to the closest level. By truncation, however,
a waiting time is translated to the closest lower level. QFCFS has a slightly higher implementation
complexity than MQL or MFQL, depending on which variant of QFCFS is used. Note that in the
actual implementation of QFCFS, the waiting times do not have to be computed every scheduling
time. The scheduling can be performed based on the arrival times, which need to be quantized only

once.
5.2 Enhanced IML (IML™)

Minimum idling schemes were shown to be very effective in exploiting minimum waiting times [22].
Minimum waiting times can be estimated by the server either predictively or conservatively. With
minimum idling schemes, the waiting queues are partitioned into two sets: a hot set () and a cold set
(C). A waiting queue belongs to # if it corresponds to a popular movie, it has more than one request,
or it has only one request and that request has been waiting longer than a pre-specified threshold, 7T'.
Because movies are numbered in decreasing order of their popularity, a movie is classified as popular

if its number is less than a fixed number, 7. Minimum idling schemes are not very sensitive to the

10

value of 7 because they can also recognize popular movies dynamically by examining the numbers of
requests in the queues. These schemes give a higher priority to the queues in #H, and schedule the
queues in C on a FCFS basis when # is empty.

IML and IMQ are two minimum idling schemes. They differ in the criterion used to select a queue
in H. IML selects the queue with the largest expected loss. The loss of a queue is defined as its
number of requests that will exceed the minimum waiting times by the next scheduling time (next
stream completion time) if they are not selected for service at the current scheduling time. In contrast,
IMQ simply selects the longest queue.

We note that the expected loss of a queue is a finite and typically a small number. Therefore,
more than one queue in H may meet the scheduling criterion of IML. In such situations, IML blindly
chooses any of these queues. In contrast, we propose a policy called Enhanced IML (IML™) that
exploits these situations by selecting the queue with the largest factored length among the set of all
eligible queues?. By combining the benefits of IML and IMQ, IMLT can improve throughput and
reduce the mean request waiting time. IML™ has a slightly higher implementation complexity than

IML, whereas IMQ has the lowest complexity among the three.

6 Performance Evaluation

In this section, we analyze the performance of FCFS, FCFS-sum, MQL-u, MQL-f, MFQL, IML, IMQ),
QFCFS, and IML* through extensive simulation. We have developed a simulator for VOD servers
that apply various scheduling policies. We have validated the simulator by reproducing several graphs
in previous studies. The server is initialized to a state close to the steady state of the common case
to accelerate the simulation. The simulation, therefore, starts with a server delivering its full capacity
of running streams, and the remaining time for the completion of each of these streams is uniformly
distributed between zero and the normal movie length. We have validated many of these results against
those generated by simulating an initially unloaded server. The simulation stops when a steady state
analysis with 95% confidence interval is guaranteed. We first start our discussion with the workload

characteristic and then present the main results.

*We have found that in these situations, choosing the longest queue is not as effective as choosing the queue with the
largest factored length.

11

6.1 Workload Characteristics

Like most prior studies, we assume that the arrival of the requests to a VOD server follows a Poisson
Process with an average arrival rate A. Hence, the inter-arrival time is exponentially distributed with
a mean T'=1/\. We also assume, as in previous works, that the accesses to movies follow a Zipf-like
distribution. With this distribution, the probability of choosing the n'* most popular of M movies
is C/n'~? with a parameter § and a normalized constant C. The parameter 6 controls the skewness
of movie access. Note that the skewness reaches its peak when § = 0, and that the access becomes
uniformly distributed when 6 = 1. In accordance with prior studies, we assume 6 = 0.271. We
study a VOD server with 120 movies, each of which is 120-minute long, and we examine the server at
different loads by fixing the request arrival rate at 40 requests per second and varying the number of
channels (server capacity) generally from 500 to 4000. To keep the discussion focused, we assume that
batching is the primary resource sharing technique, and we do not consider any VCR-like operations.
These operations can be supported by allocating contingency channels [7]. For MFQL, we assume
that the server knows exactly the access frequency of each movie. This may lead to overestimating
its performance. The performance of minimum idling schemes is not sensitive to the value of the
threshold 7 because they also classify movies as hot or cold dynamically. We fix 7 at 20.

As in previous studies, we characterize the waiting tolerance of customers by two distributions: an
exponential distribution with g = 4 minutes and a truncated normal distribution with g = 4 minutes
and o = 1.33 minutes. With truncation, the waiting times that are negative or greater than 15 minutes
are excluded.

We characterize the waiting tolerance with IMQ, IML, and IML™ by the following two distributions.
The first is a normal distribution with x4 = 4 minutes and ¢ = 1.33 minutes. In the second, which we
refer to as C+Ezponential, customers exhibit a minimum waiting time of 3 minutes, followed by an
exponential time with p = 3 minutes. These distributions were used in [22].

To study the effectiveness of providing time of service guarantees, we characterize the waiting
tolerance by the following distribution. In this distribution, which we refer to as NormalG, customers
who receive time of service guarantee will wait for service if their waiting times will be less than four
minutes; the waiting times of all other customers follow a truncated normal distribution with y = 4

minutes and ¢ = 1.33 minutes. This distribution was used in [25].

12

6.2 Result Presentation and Analysis

We now compare the various scheduling policies and then summarize the results.
6.2.1 Comparing MQL Schemes: MQL-f and MQL-u

Let us first analyze the performance of MQL-f and MQL-~u. Figures 1 and 2 compare the performance
of these two policies in terms of reneging percent, average request waiting time, and unfairness. The
results are shown for the cases in which the waiting tolerance of customers follows an exponential and
a normal distribution, respectively. These results shows that MQL-f is not only significantly fairer
than MQL-u, but it also yields higher throughput. MQL-u, however, reduces waiting times better
for large server capacities. The superior throughput with MQL-f comes from improved batching. In
particular, the requests for more popular movies will be given the chance of accumulating for longer

periods of time in the waiting queues. This also explains the increase in waiting times.

—— MQL-f —— MQL-f
A o~ MQL-u | e -e- MQL-u

Reneging Percent

Waiting Time (min)
Unfairness

3000 3500 2000 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Server Capacity Server Capacity

500 1000 1500

o o
Server Capacity

(a) In Reneging Percent (b) In Waiting Time (c) In Unfairness

Figure 1: Comparing Variants of MQL (Exponential Distribution)

6.2.2 Comparing FCFS, FCFS-sum, MQL-f, and MFQL

Let us now analyze the performance of FCFS, FCFS-sum, MQL-f, and MFQL. Figures 3 and 4 compare
the performance of these policies in terms of the three performance metrics when the waiting tolerance
follows an exponential and normal distribution, respectively. The figures also show the performance
of RAND, a policy that randomly selects a waiting queue for service, in order to demonstrate the
effectiveness of the other policies. The results indicate that MQL-f and MFQL perform nearly as well

in terms of the three performance metrics. The little performance edge of MFQL may diminish if the

13

Reneging Percent
Waiting Time (min)
Unfairness

&

0 TR

3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

3000 3500 4000 500 1000 1500 200 0
Server Capacity Server Capacity

500 1000 1500 200 00
Server Capacity

(a) In Reneging Percent (b) In Waiting Time (c) In Unfairness

Figure 2: Comparing Variants of MQL (Normal Distribution)

server has no perfect knowledge of the movie access frequencies. Moreover, MQL-f is much simpler as
it does not require periodic computations of access frequencies. Hence, contrary to [1], MQL (MQL-f
in particular) may be preferred over MFQL. The results also show that MQL-f and MFQL always
perform the best in terms of the average waiting time. Interestingly, RAND outperforms FCFS in
terms of the mean waiting time when the tolerance follows a normal distribution. Moreover, the results
demonstrate that MQL-f and MFQL provide better throughput than FCFS and FCFS-sum when the
waiting tolerance follows an exponential distribution. When the waiting tolerance follows a normal
distribution, however, FCFS-sum yields the highest throughput, and FCFS performs nearly as well for
high server capacities. FCFS-sum outperforms FCFS in terms of throughput and the mean waiting
time because it considers the waiting times of all request in each queue. In terms of unfairness, RAND
has the absolute edge, followed by FCFS and then FCFS-sum. As expected, all policies perform almost

identically for very high server capacities.
6.2.3 Providing Time of Service Guarantees

Let us now discuss the performance advantages of providing customers with time of service guarantees.
We refer to FCFS that may provide time of service guarantees as FCFSg. Figure 5 shows how well
FCFSg performs in comparison with FCFS, FCFS-sum, and MFQL when the waiting tolerance follows
a NormalG distribution (discussed in Subsection 6.1). The results here are based on the assumption
that only FCFSg can encourage customers to wait. Note that FCFSg results in the best throughput

and generally the best fairness, but it performs the worst in terms of the mean waiting time.

14

Reneging Percent

Reneging Percent

Reneging Percent

FCFS

beott

Waiting Time (min)

FCFS

=31

3000 3500

1500

W0 0
Server Capacity

(a) In Reneging Percent

Figure 3: Comparing FCFS, FCFS-sum, MQL-f, MFQL, and RAND (Exponential Distribution)

4000 500

1000 1500 3000 3500

200 0
Server Capacity

(b) In Waiting Time

FCFS

. — —— FCFS
7ol —>— FCFS-sum —>— FCFS-sum
» -e- MQL-f I -e-
o o MFQL o
——_RAND 25 >*
=
so 1 E
o 4
£
b (=
o
=
3] E
s
1
2 1
o] 0s
n n n H Sog n n n n n n
S0 1000 50 3000 3500 o %o 1000 1500 000 3500

E 0
Server Capacity

(a) In Reneging Percent

2000 0
Server Capacity

(b) In Waiting Time

Unfairness

Unfairness

006

004

FCFS

MQL-f
MFQL
RAND

e t1

e

FCFS-sum ||

b L R B —

500

*
1000 1500 2000

Server Capacity

3000 3500

(c) In Unfairness

005

[

—— FCFS
—— FCFS-sum
-e- MQL-f
o MFQL
—+- RAND

1000

— %
2000
Server Capacity

1500 3000

(c) In Unfairness

Figure 4: Comparing FCFS, FCFS-sum, MQL-f, MFQL, and RAND (Normal Distribution)

3
—— FCFS —— FCFS
—— FCFS-sum —— FCFS-sum
60 -e- MFQL -e- MFQL
-+ FCFSg —+- FCFSg
50l b — 25|
£
E
40 b o 2
£
=
» 1 2.4
8
=
20 B 1
10 B 05|
B S
) B o ww mwo ; . W0 mo o

2000
Server Capacity

(a) In Reneging Percent

2000 2500
Server Capacity

(b) In Waiting Time

Unfairness

FCFS
FCFS-sum
MFQL
FCFSg

toyf

Sy .

500

1500 2000

2500 3000
Server Capacity

(c) In Unfairness

Figure 5: Effectiveness of FCFSg (NormalG Distribution)

15

FCFSg provides superior throughput by motivating customers to wait, and the performance gains
depend greatly on the resultant patterns of waiting tolerance. It is unclear, however, whether NormalG
can accurately characterize the real waiting tolerance because of the lack of any modeling study of
servers that provide time of service guarantees. Moreover, FCFSg may violate its time of service
guarantees, and it is not the only policy that can influence the waiting tolerance. All other scheduling
policies can also motivate customers to wait to various degrees by providing them with expected
starting times of service. The expected starting times of service can be estimated based on server load,
the completion times of running streams, and the history of waiting times. Because the average waiting
times differ widely from one queue to another, basing the scheduling decisions on each particular queue

can produce more accurate estimates of the expected starting times of service.
6.2.4 Effectiveness of QFCFS

Let us now examine the performance of the proposed QFCFS policy. We have not observed any
considerable difference among the different implementations of QFCFS in the overall performance. We
thus limit the analysis to the simplest implementation, which conducts the quantization by truncation
and uses MQL for the selection criterion among the queues with the highest quantized waiting time.
We consider here only the case when the waiting tolerance follows an exponential distribution. When
the tolerance follows a normal distribution, FCFS already performs better than MQL/MFQL in terms
of throughput, so the quantization in that case may not be advantageous.

Figure 6 demonstrates the impact of the quantization interval (Q)) on performance. As expected,

both throughput and waiting times improve with larger values of (), but unfairness increases.

Reneging Percent

Waiting Time (min)
Unfairness
o
|
'
|
|
o

1500 2000 2500 3000 3500 4000 1500 2000 2500 3000 3500 4000 11500 2000 2500 3000 3500 4000
Server Capacity Server Capacity Server Capacity

(a) In Reneging Percent (b) In Waiting Time (c) In Unfairness

Figure 6: Effect of Quantization Level (Exponential Distribution)

16

Figure 7 compares the performance of QFCFS with FCFS and MFQL. (MFQL is shown here instead
of MQL-f because it results in slightly shorter waiting times when it has perfect knowledge of access
frequencies.) Note that the performance of QFCFS in terms of the three metrics approaches that of
MFQL as the server capacity increases. Thus, QFCFS performs as well as MFQL (especially for high
server capacities) while being able to prevent starvations. QFCFS can also provide reasonably-accurate
predictive time of service guarantees because these guarantees can be based on next stream completion
times. Note that as) decreases, the accuracy of prediction increases, while the performance (in terms
of throughput and waiting times) degrades. So,) should be chosen as a tradeoff. We could not
quantify the impact of providing predictive time of service guarantees because of the lack of any study

that models the waiting tolerance in such cases.

—— FCFS —— FCFS " I " " [—— Fcrs
-e- MFQL 00l -e- MFQL |{
saf > QFCFS o AN > QFCFS
/

Reneging Percent
Unfairness
A

= S

3500 4000 1000 1500 2001 00 3500 4000

00 3500 2000 1000 1500 200 000 2500 30
Server Capacity

00 3o 0 500 3000
Server Capacity Server Capacity

(a) In Reneging Percent (b) In Waiting Time (¢) In Unfairness

Figure 7: Effectiveness of QFCFS (Exponential Distribution, = 120 sec)

6.2.5 Exploiting Minimum Waiting Times

Finally, let us analyze the performance of the policies that exploit minimum request waiting times:
IMQ, IML, and the proposed IML™ policy. As discussed in Subsection 6.1, we characterize the waiting
tolerance by two distributions: normal and c+exponential. As in [22], we set the threshold T" in the
case of a ct+exponential distribution to the minimum waiting time. By contrast, in the case of a normal
distribution, where there is no fixed minimum waiting time, the best value of 1" should be found. We
define H as the ratio of the threshold T" to the average request waiting time (which is mean of the
normal distribution,).

Figure 8 compares the performance of IML, IMQ, and MFQL in the case of a c+exponential

17

distribution. (FCFS-sum and FCFS do not perform as well as MFQL with this distribution.) We do
not show the results in the case of a normal distribution because they follow a very similar behavior.
Note that IML yields the highest throughput but leads to the longest waiting times. IML is also the
fairest for high server capacities. In contrast, IMQ performs relatively well in terms of the waiting

times but yields the lowest throughput.

: — T T T : o
—— MFQL RN —— MFQL —— MFQL
a5RY ->- IML Tl -b- IML —b- IML
. M R - .
a0 Q 25 \\& ma IMQ 0.2 \\ - IMQ

Unfairness

Reneging Percent

Waiting Time (min)

151

H H f -y 1 H H H ;
S00 1000 1500 2000 2500 3000 00 1000 1500 2000 2500 3000 500 1000 1500 2000
Server Capacity Server Capacity Server Capacity

(a) In Reneging Percent (b) In Waiting Time (c) In Unfairness

Figure 8: Comparing IML, IMQ, and MFQL (C+Exponential Distribution)

Figures 9 and 10 show the effectiveness of the proposed IM L™ policy in comparison with IML
when the waiting tolerance follows c+exponential and normal distributions, respectively. The results
show that IML™ achieves up to 21% better throughput than IML when the reneging percent is greater
than 5 and the waiting tolerance follows a c+exponential distribution, and it achieves up to 15% better
throughput when the tolerance follows a normal distribution. IML™ also reduces the average waiting
time by up to 18% when the reneging percent is greater than 5 and the waiting tolerance follows a
c+exponential distribution, and it reduces the average waiting time by up to 21% in the case of a
normal distribution. Each of IMLT and IML is fairer than the other in certain regions of the curve.

Figure 11 illustrates the impact of H (and thus the threshold T) on the performance of IML™
and IML. Note the reneging percent decreases with H until H reaches 0.5, and then, it starts to go
up. In contrast, the waiting time generally increases with H, except when IML™" is applied and H is
greater than 0.7. The unfairness decreases with H until H reaches 0.7. Thus, the value of H may be
selected as a compromise, but we believe that 0.5 is the best value because the throughput is the most
important performance metric. Also note that IML* almost invariably outperforms IML in terms of

throughput and waiting times.

18

Reneging Percent

Reneging Percent

Reneging Percent

Waiting Time (min)

Server Capacity

(a) In Reneging Percent

Figure 9: Effectiveness of IML* (C+Exponential Distribution)

1000 2500

1500
Server Capacity

(b) In Waiting Time

3000

Waiting Time (min)

Server Capacity

(a) In Reneging Percent

000 e
Server Capacity

(b) In Waiting Time

2500 3000

Unfairness

Unfairness

1000

2000 2500’ N 3000
Server Capacity

(c) In Unfairness

1000

2000
Server Capacity

(c) In Unfairness

Figure 10: Effectiveness of IML™ (Normal Distribution, H = 0.5)

Waiting Time (min)

(a) In Reneging Percent

(b) In Waiting Time

Unfairness

001

01

(¢) In Unfairness

Figure 11: Effect of Threshold (Normal Distribution, 2000 Channels)

19

Interestingly, IML* also performs almost identically to FCFS-sum when the tolerance follows a

normal distribution (where there is no fixed minimum waiting time) as shown in Figure 12.

o~ FCFS—sum ~>- FCFS-sum N ‘ ‘ " [~p- FCFS-sum
—— IML+ —— IML+ 018> —— IML+
! A AN

Reneging Percent
Unfairness

Waiting Time (min)

2500 3000 500 1000 2500 3 500 1000 2500 3000

1500 2000
Server Capacity Server Capacity

%0 E
Server Capacity

(a) In Reneging Percent (b) In Waiting Time (c) In Unfairness

Figure 12: Comparing FCFS-sum and IML" (Normal Distribution, H = 0.5)

6.2.6 Summary of Results

The relative performance of scheduling policies depends greatly on the waiting tolerance of customers.
Thus, let us summarize the results for each tolerance model separately. Table 1 compares the best
performers when the tolerance follows an exponential distribution. The numbers indicate the rank of
the corresponding policies in terms of the specified performance metrics. In the context of “starva-
tions”, a “1” means that the policy prevents starvations, while a “2” means the opposite. Interestingly,
MQL-f performs nearly as well as MFQL in terms of throughput, waiting times, and unfairness, even
when assuming that MFQL has perfect knowledge of movie access frequencies. In addition, MQL-f is
simpler because it does not require periodic computations of access frequencies. Thus, contrary to [1],
MQL (MQL-f in particular) may be preferred over MFQL. When the reneging percentage is less than
15, which should be the common case as much larger reneging percentages would be unacceptable,
QFCFS performs very closely to MFQL and MQL-f in terms of throughput and waiting times, and
the performance gap becomes negligible when the reneging percentage falls below 10. QFCFS can also
prevent starvations, whereas MFQL and MQL-f cannot. Moreover, QFCF'S is generally fairer and can
provide more accurate time of service guarantees than MFQL and MQL-f.

Table 2 compares the best performers when the tolerance follows a normal distribution. In this

group, FCFS-sum and IML™ perform generally better than FCFS, and they perform very closely

20

Table 1: The Best Performers with an Exponential Distribution of Tolerance

to each other in terms of various metrics. They also have comparable implementation complexities.

IML™" is only a little fairer than FCFS-sum.

| Policy | Throughput | Waiting Time | Fairness | Starvations |

MQL-f 1 1 2 2
MFQL 1 1 2 2
QFCFS 2 2 1 1

Table 2: The Best Performers with a Normal Distribution of Tolerance
Policy | Throughput | Waiting Time | Fairness | Starvations
FCFS 2 2 1 1
FCFS-sum 1 1 3 2
IML* 1 1 2 2

Table 3 compares the best performers when the tolerance follows a c+exponential distribution. In

this case, IML™ is the clear winner (Figures 8 and 9).

Table 3: The Best Performers with a C+Exponential Distribution of Tolerance
| Policy | Throughput | Waiting Time | Fairness | Starvations |

IML 2 2 1 2

IML* 1 1 1 2

When assuming that FCFS provides true time of service guarantees and that all other policies
cannot influence customers to wait, FCFS can lead to the best throughput, but it results in the longest
waiting times. The performance gains of FCFS depend greatly on the resultant waiting tolerance of
customers, but there is no modeling study of the waiting tolerance in the presence of time of service
guarantees. Moreover, FCFS is not the only policy that can influence customers to wait. All other
scheduling policies can motivate customers to wait to various degrees by providing them with the

expected waiting times.

7 Conclusions

The investigation of various alternatives to improve the performance of multimedia-on-demand (MOD)
servers in general and video-on-demand (VOD) servers in particular has become a major research focus.
Increasing the degrees of resource sharing through intelligent scheduling is one such avenue and is the

theme of this paper.

21

We have conducted an in-depth investigation of scheduling policies, including FCFS, MQL, MFQL,
IML, and IMQ. In contrast with [25], we have shown that FCFS may violate its time of service guar-
antees. We have also shown that the discrepancy in [5, 22, 1] with regard to the relative performance
of MQL to FCFS is caused by alternative implementations of MQL. We have considered two imple-
mentations of MQL: MQL-f and MQL-u. MQL-f selects the queue of the least popular movie among
the longest queues, while MQL-u selects the queue of the most popular movie. Moreover, we have
studied the effectiveness of Longest Wait First (LWF or FCFS-sum) [8, 27] in VOD servers.

We have also proposed two scheduling policies: Quantized FCFS (QFCFS) and Enhanced IML
(IML*). QFCFS combines the benefits of FCFS and MQL/MFQL by scheduling requests based on
both waiting times and queue lengths. IML™ improves IML by capturing the situations in which
multiple queues become eligible candidates for selection.

We have evaluated the effectiveness of various scheduling policies through extensive simulation. We
have examined the impacts of customer waiting tolerance and server capacity (or server load) on the
performance of each policy in terms of the overall customer reneging probability, the average customer
waiting time, and unfairness (against unpopular movies). The first objective is the most important
because it translates to server throughput, while the second comes next in importance. Moreover, we
have compared the policies in terms of other objectives, such as implementation complexity, ability to
prevent starvations, and ability to provide (predictive) time of service guarantees. The results can be

sumimarized as follows.

e MQL-f is not only fairer than MQL-u, but it also yields higher throughput, especially for high

server capacities.

o MQL-f performs nearly as well as MFQL in terms of throughput, waiting times, and unfairness,
even when assuming that MFQL has perfect knowledge of movie access frequencies. MQL-f is
also simpler. Thus, contrary to [1], MQL (MQL-f in particular) may be preferred over MFQL.

e QFCFS is recommended when the waiting tolerance follows an exponential distribution and
when the server is not very heavily loaded. With QFCFS, a server can support as many con-
current customers for high server capacities as MQL-f and MFQL and can start their service as
immediately, while being relatively fair and able to prevent starvations and provide reasonably-

accurate predictive time of service guarantees. In contrast, MQL-f is recommended when the

22

server is very heavily loaded. Because QFCFS is a generalized form of MQL/MFQL and FCFS,
this behavior in the case of an exponential distribution motivates the use of a dynamic QFCFS

policy that adjusts the quantization interval based on server load.

e When the waiting tolerance follows a normal distribution, FCFS-sum and IML™ achieve the best

overall performance. IML™ tends to be a little fairer than FCFS-sum.

e When customers exhibit minimum waiting times, IML™ achieves the best overall performance.

The results indicate that the waiting tolerance of customers determines the most appropriate

scheduling policy. The policies that achieve the best overall performance are dynamic QFCFS (when

the tolerance follows an exponential distribution) and IML* (when the server follows a normal distri-

bution or when the customers exhibit minimum waiting times).

References

[1]

2]

3]

[4]

[5]

[6]

[7]

C. C. Aggarwal, J. L. Wolf, and P. S. Yu. The Maximum Factor Queue Length Batching Scheme
for Video-on-Demand Systems. IEEE Trans. on Computers, 50(2): 97-110, February 2001.

D. Aksoy and M. J. Franklin. Scheduling for Large-Scale On-Demand Data Broadcasting, In Proc.
IEEE INFOCOM, pages 651-659, April 1998.

A. L. Chervenak. Tertiary Storage: An Evaluation of New Applications. Ph.D. Thesis, U.C. Berke-
ley, December 1994. U.C. Berkeley Tech. Report UDB/CSD 94/847, December 1994.

A. L. Chervenak, D. A. Patterson, and R. H. Katz. Choosing the Best Storage Systems for Video
Service. In Proc. of the ACM Conf. on Multimedia, pages 109-119, November 1995.

A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling Policies for an On-Demand Video Server
with Batching. In Proc. of the ACM Conf. on Multimedia, pages 391-398, October 1994.

A. Dan, D. M. Dias, R. Mukherjee, D. Sitaram, R. Tewari. Buffering and Caching in Large-Scale
Video servers. In Digest of Papers. IEEE Int’l Computer Conf., pages 217-225, March 1995.

A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley. Channel Allocation under Batching and
VCR Control in Movie-on-Demand Servers. Journal of Parallel and Distributed Computing, 30(2):
168-179, November 1995.

23

[8] H. D. Dykeman, M. H. Ammar, and J. W. Wong. Scheduling Algorithms for Videotex Systems
under Broadcast Delivery. In Proc. of IEEE Int’l Conf. on Communication, pages 1847-1851, June
1986.

[9] R. Flynn, and W. Tetzlaff. Disk Striping and Block Replication Algorithms for Video File Servers.

In Proc. of the Int’l Conf. on Multimedia Computing and Systems, pages 590-597, June 1996.

[10] L. Giuliano. Deploying Native Multicast across the Internet, Online white paper at

http://www.sprintlink.net/multicast/whitepaper.html.

[11] L. Golubchik, J. C. S. Lui, and R. Muntz. Reducing I/O Demand in Video-On-Demand Storage
Servers. In Proc. of the ACM SIGMETRICS Conf. on Measurements and Modeling of Computer
Systems, pages 25-36, May 1995.

[12] K. A. Hua, Y. Cai, and S. Sheu. Patching: A Multicast Technique for True Video-on-Demand
Services. In Proc. of ACM Multimedia, pages 191-200, September 1998.

[13] L. Juhn and L. Tseng. Harmonic Broadcasting for Video-on-Demand Service. IEEE Trans. on
Broadcasting, 43(3): 268-271, September 1997.

[14] S. Jamin, S. Shenkar, L. Zhang, and D. D. Clark. An admission Control Algorithm for Predictive
Real-Time Service. In Proc. of the Int’l Workshop on Network and Operating System Support for
Digital Audio and Video, pages 349-356, November 1992.

[15] J. Nieh and M. S. Lam. The Design, Implementation and Evaluation of SMART: A Scheduler
for Multimedia Applications. In Proc. of the ACM Symp. on Operating Systems Principles, pages
184-197, October 1997.

[16] J.-F. Péaris, S. W. Carter, and D. D. E. Long. Efficient Broadcasting Protocols for Video on
Demand. In Proc. of the Int’l Symp. on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, pages 127-132, July 1998.

[17] J.-F. Paris. A Fixed-Delay Broadcasting Protocol for Video-on-Demand. In Proc. of the Int’l

Conf. on Computer Communications and Networks, pages 418-423, October 2001.

24

[18] P. V. Rangan, and H. M. Vin. Designing File Systems for Digital Video and Audio. In Proc. of

the ACM Symp. on Operating Systems Principles, pages 81-94, October 1991.

[19] A. L. N. Reddy, J. Wyllie. Disk Scheduling in a multimedia I/O system. In Proc. of the ACM

Conf. on Multimedia, pages 225-233, August 1993.

[20] N. J. Sarhan and C. R. Das. Adaptive Block Rearrangement Algorithms for Video-On-Demand

Servers. In Proc. of Int’l Conf. on Parallel Processing, pages 452-459, September 2001.

[21] S. Sen, L. Gao, J. Rexford, and D. Towsley. Optimal Patching Schemes for Efficient Multimedia
Streaming. In Proc. of the Int’l Workshop on Network and Operating Systems Support for Digital
Audio and Video, June 1999.

[22] H. Shachnai and P. S. Yu. Exploiting Wait Tolerance in Effective Batching for Video-on-Demand
Scheduling. Multimedia Systems, 6(6): 382-394, 1998.

[23] P. Shenoy, and V. Harric. Efficient Striping Techniques for Variable Bit Rate Continuous Media
File Servers. Performance Evaluation Journal, 38(2): 175-199, December 1999.

[24] Sprint. SprintLink Multicast, Online document at

http://www.sprintlink.net/multicast/whitepaper.html.

[25] A. K. Tsiolis and M. K. Vernon. Group-Guaranteed Channel Capacity in Multimedia Storage
Servers. In Proc. of the ACM SIGMETRICS Conf. on Measurements and Modeling of Computer
Systems, pages 285-297, June 1997.

[26] H. M. Vin, P. Goyal, and A. Goyal. A Statistical Admission Control Algorithms for Multimedia
Servers. In Proc. of the ACM Multimedia, pages 33-40, October 1994.

[27] J. W. Wong and M. H. Ammar. Analysis of Broadcast Delivery in a Videotex System. IEEE
Trans. on Computers, 34(9): 863-866, September 1985.

25

